DRS4Timelapse#

class lstcam_calib.tools.extract_drs4_timelapse_data.DRS4Timelapse(**kwargs: Any)#

Bases: Tool

Tool to write-out event-wise drs4 timelapse data.

This tool essentially just converts the zfits event data to hdf5 in a way that allows loading all events but only for a specific pixel or chunks of pixels to reduce memory usage of the following step.

This is the first tool to be run for performing computation of dt correction coefficients. The input must be a drs4 run without any corrections applied by EVB.

The output of this tool is aggregated into histograms of the dt dependent charge by lstcam_calib_aggregate_drs4_dt_data, which can then be fitted to produce coefficients by lstcam_calib_aggregate_drs4_dt_data.

Attributes Summary

aliases

classes

name

output_path

A path Trait for input/output files.

skip_samples_end

An int trait.

skip_samples_front

An int trait.

Methods Summary

finish()

Do final actions.

setup()

Set up the tool.

start()

Run main event loop.

Attributes Documentation

aliases: StrDict = {('i', 'input-file'): 'LSTEventSource.input_url', ('m', 'max-events'): 'LSTEventSource.max_events', ('o', 'output-file'): 'DRS4Timelapse.output_path'}#
classes: ClassesType = [<class 'ctapipe_io_lst.LSTEventSource'>]#
name: str | Unicode[str, str | bytes] = 'lstcam_calib_extract_drs4_dt_data'#
output_path#

A path Trait for input/output files.

Attributes:
exists: boolean or None

If True, path must exist, if False path must not exist

directory_ok: boolean

If False, path must not be a directory

file_ok: boolean

If False, path must not be a file

skip_samples_end#

An int trait.

skip_samples_front#

An int trait.

Methods Documentation

finish()#

Do final actions.

setup()#

Set up the tool.

start()#

Run main event loop.