Installation#

User Installation#

lstcam-calib is on PyPI, install using:

$ pip install lstcam-calib

Developer Setup#

This repository stores test data using git LFS.

Install it using your package manager or by downloading from the website.

Then run:

$ git lfs install

This is only required once per machine / user.

If you cloned the repository before setting up git LFS correctly, you need to run

$ git lfs pull

in the cloned repository after installing git LFS.

Using conda#

Using the miniforge3 distribution and mamba is recommended.

Clone the repository, create the conda environment, then install the package in development mode:

$ git clone git@gitlab.cta-observatory.org:cta-array-elements/lst/analysis/lstcam_calib
$ cd lstcam_calib
$ mamba env create -f environment-dev.yaml
$ mamba activate lstcam-calib-dev
$ pip install -e '.[all]'

Using virtual environments#

Make sure you have at least python 3.10, you can use pyenv to install and use specific python versions.

As a developer, clone the repository, create a virtual environment and then install the package in development mode:

$ git clone git@gitlab.cta-observatory.org:cta-array-elements/lst/analysis/lstcam_calib
$ cd lstcam_calib
$ python -m venv venv
$ source venv/bin/activate
$ pip install -e '.[all]'

The same also works with conda, create and activate a conda env instead of a venv above.