Installation#
User Installation#
lstcam-calib
is on PyPI, install using:
$ pip install lstcam-calib
Developer Setup#
This repository stores test data using git LFS.
Install it using your package manager or by downloading from the website.
Then run:
$ git lfs install
This is only required once per machine / user.
If you cloned the repository before setting up git LFS correctly, you need to run
$ git lfs pull
in the cloned repository after installing git LFS.
Using conda#
Using the miniforge3 distribution and mamba
is recommended.
Clone the repository, create the conda environment, then install the package in development mode:
$ git clone git@gitlab.cta-observatory.org:cta-array-elements/lst/analysis/lstcam_calib
$ cd lstcam_calib
$ mamba env create -f environment-dev.yaml
$ mamba activate lstcam-calib-dev
$ pip install -e '.[all]'
Using virtual environments#
Make sure you have at least python 3.10, you can use pyenv to install and use specific python versions.
As a developer, clone the repository, create a virtual environment and then install the package in development mode:
$ git clone git@gitlab.cta-observatory.org:cta-array-elements/lst/analysis/lstcam_calib
$ cd lstcam_calib
$ python -m venv venv
$ source venv/bin/activate
$ pip install -e '.[all]'
The same also works with conda, create and activate a conda env instead of a venv above.